

Programa Analítico de Disciplina

FIS 467 - Introdução à Eletrodinâmica Quântica

Departamento de Física - Centro de Ciências Exatas e Tecnológicas

Catálogo: 2019

Número de créditos: 4 Carga horária semestral: 60h Carga horária semanal teórica: 4h Carga horária semanal prática: 0h

Semestres: I e II

Objetivos

Desenvolver as ideias básicas e fundamentais ta teoria de campos relativística, teoria quântica da radiação, emissão e absorção de fótons por átomos e da equação de Dirac.

Ementa

Campos Clássicos. O princípio da incerteza no caso relativístico. Teoria quântica da radiação. Emissão e absorção de fótons por átomos. Equação de Dirac. Desvio de Lamb.

Pré e co-requisitos

FIS 364 e FIS 352*

Oferecimentos obrigatórios

Não definidos

Oferecimentos optativos		
Curso	Grupo de optativas	
Física - Bacharelado	Geral	
Física - Licenciatura (Integral)	Geral	

FIS 467 - Introdução à Eletrodinâmica Quântica

Conteúdo					
nidade	Т	Р	ED	Pj	То
1.Campos Clássicos 1.Partículas e campos 2.Sistemas mecânicos discretos e contínuos 3.Invariância de Lorentz 4.Campos escalares clássicos 5.Campos de Maxwell clássicos 6.Potencial vetor em mecânica quântica	8h	0h	Oh	Oh	8h
 2.O princípio da incerteza no caso relativístico 1.Breve revisão de mecânica quântica não-relativística 2.União entre teoria quântica e teoria da relatividade 3.Relações de incerteza no caso relativístico 	4h	0h	Oh	0h	4h
3. Teoria quântica da radiação 1. O campo da radiação clássico 2. Quantização do campo de radiação livre 3. Operadores de criação, destruição e operador números 4. Fótons 5. O campo eletromagnético na teoria quântica 6. Momento angular e paridade do fóton 7. A polarização do fóton	10h	0h	Oh	Oh	10
4. Emissão e absorção de fótons por átomos 1. Interação da radiação com a matéria 2. Emissão e absorção de fótons por elétrons não-relativísticos 3. Breve revisão de teoria de perturbação dependente do tempo 4. Emissão espontânea na aproximação de Dipolos 5. Espalhamento Rayleigh, Thomson e Efeito Raman 6. Damping de radiação e ressonância fluorescente 7. Relações de dispersão e causalidade 8. Auto-energia de um elétron ligado	14h	0h	Oh	0h	14
 5. Equação de Dirac 1. Breve revisão da equação de Schrödinger 2. A equação de Klein-Gordon 3. A falha da equação de Klein-Gordon na explicação de espectro do hidrogênio 4. A equação de Klein-Gordon como uma equação para partículas de Spin zero 5. A derivação da equação de Dirac 6. A equação de Dirac como uma equação para equação de Spin 1/2 7. Soluções simples da equação de Dirac 8. Partículas e antipartículas 9. Equação de Dirac para um elétron em um campo externo 10. A estrutura fina dos níveis do átomo de hidrogênio 	16h	0h	Oh	Oh	16
6. Desvio de Lamb 1. Resumo geral dos resultados da equação de Dirac aplicada ao átomo de Hidrogênio	8h	Oh	Oh	0h	8h

A autenticidade deste documento pode ser conferida no site https://siadoc.ufv.br/validar-documento com o código: G5BK.PR3I.MKMN

UNIVERSIDADE FEDERAL DE VIÇOSA PRE | PRÓ-REITORIA DE ENSINO

níveis 2S2/2 e 2P1/2 3.A experiência de Lamb e Retherford e o desvio de Lamb dos níveis 2S1/2 e 2P1/2 4.Flutuações do vácuo quântico e o desvio de Lamb 5.A polarização do vácuo quântico
2.A previsão da equação de Dirac da degenerescência dos

(T)Teórica; (P)Prática; (ED)Estudo Dirigido; (Pj)Projeto; Total(To)

Planejamento pedagógico				
Carga horária	Itens			
Teórica	Apresentação de conteúdo oral e escrito com o apoio de equipamento (projetor, quadro-digital, TV, outros); Apresentação de conteúdo oral e escrito em quadro convencional; Apresentação de conteúdo pelos estudantes, mediado pelo professor; Apresentação de conteúdo utilizando aprendizado ativo; Debate mediado pelo professor; e Seminários			
Prática	Não definidos			
Estudo Dirigido	Não definidos			
Projeto	Não definidos			
Recursos auxiliares	Não definidos			

FIS 467 - Introdução à Eletrodinâmica Quântica

Bibliografias básicas		
Descrição		
LEON, M. Particle physics: an introduction. New York: Academic Press, 1973.	1	
LILLEY, J. S. Nuclear Physics. Chichester, New York: J. Wiley, 2009.	2	
MORIYASU, K. An elementary primer for Gauge theory. Singapore, Sin.: World Scientific, 1983.	1	

Bibliografias complementares			
Descrição			
EISELE, J. A. Modern quantum mechanics with applications to elementary particle physics: an introduction to contemporary physical thinking. New York: Wiley-Interscience, 1969.	1		
GIBSON, W. M. Symmetry principles in elementary particle physics. Cambridge, Eng.: Cambridge University Press, 1976.			
TASSIE, L. J. The physics of elementary particles. London: Longman, 1973.	1		
VOLKEL, A. H. Fields, particles and currents. Berlin: Springer-Verlag, 1977.	1		
WILLIAMS, W. S. C. Nuclear and particle physics. Oxford: Clarendon Press, 1995.	1		